
.i 

J UTEC DO 66-036 
June 1966 

FATIGUE FAILURE IN LINEARLY VISCOELASTIC MATERIALS 

M. L. Williams 
W. G. Knauss 
F. R. Wagner 

Paper presented 
at the 

Fifth Annual ICRPG Mechanical Behavior Working Group Meeting 
Applied Physics Laboratory 

Maryland 
November 15-16, 1966 

ff 653 July 65 

College of Engineering 
University of Utah 

Salt Lake City, Utah 84112 



I .  

w FATIGUE FAILURE IN LINEARLY VISCOELASTIC MATERIALS 

4 M. L. Williams 

University of Utah 
W. G. Knauss 

Assistant Professor 
Firestone Flight Sciences Laboratory 
California Institute of Technology 

F. R. Wagner 
Assistant Research Professor 

College of Engineering 
University of Utah 

I Professor of Engineering 

I 
! 1 

ABSTRACT 

The thermodynamic approach to the fracture of linearly viscoelastic ma- 
terials presented earlier is extended to include fatigue. The theoretical 
analysis of the growth of an internal spherical flaw due to a uniformly dis- 
tributed, oscillatory input of displacement in the radial direction predicts 
a growth-rest type of flaw growth which depends upon the properties of the 
media and the loading frequency. Comparison of these results with experi- 
mental crack growth data for a pre-cracked sheet specimen subjected to an 
oscillatory displacement input discloses a qualitative similarity in behavior. 
It is, therefore, believed that the analytical model employed is representa- 
tive of real flaw behavior and that its study can reveal the main features sf 
macroscopic flaw-growth. 

INTRODUCTION 

At the International Conference on Fracture held in Sendai, Japan, we 
presented a formulation of the fracture problem for linearly viscoelastic ma- 
terials based upon the energy balance concept. (1,2) 
to that employed by Griffith(3) in studying fracture of brittle materials, 
but includes the appropriate terms for viscous energy dissipation. 

Now whereas it is in principle possible to redict the behavior in an 
arbitrary crack configuration, e.g. a Griff ith(3y or Snedd~n(~) type flaw, 
the relative mathematical complexity for these geometries is considerable, 
particularly when compounded with the viscoelastic time dependence. 
lytical purposes, it is therefore desirable to find a flaw configuration 
whose analysis is relatively simple yet whose behavior is similar to real 
crack behavior. 
urations in anelastic media yielded 

The approach is similar 

-. 

For ana-, 

, I 

Derivation of the critical stresses for various flaw config.. 
, 

I . 
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Cri t ica l  Stress ; . I  

Flaw Geometry * '  

2-D Crack ( G r i f f i t h )  

C y l i n d r i c a l  Cavi ty  (a/b+O) J 2 7 3 : m  
3-D Crack (Sneddon) e m m  0 

Spher i ca l  Cavity (a/b+O) 4 /3  62 
0 

I 

t I 

Note t h a t  a l though t h e  s t r e s s  a n a l y s i s  f o r  t h e  c y l i n d r i c a l  and s p h e r i c a l  
f l aws  are much s impler ,  t h e  elastic f r a c t u r e  stress express ions  are func t ion-  
a l l y  s imilar  and are even q u a n t i t a t i v e l y  comparable.* 
above, i t  is  hypothesized t h a t  a similar comparison w i l l  e x i s t  f o r  v i scoe la s -  
t i c  media. 
cons ide rab le  s i m p l i f i c a t i o n  by using t h e  c y l i n d r i c a l  o r  s p h e r i c a l  f law geom- 
e t r y .  All a n a l y s i s  i n  t h i s  paper assumes a s p h e r i c a l  f law of i n i t i a l  r a d i u s  
a, and loaded i n  h y d r o s t a t i c  tens ion  a t  r a d i u s  b. 

I 

Encouraged by t h e  

The s tudy  of v i s c o e l a s t i c  f r a c t u r e  may thus  be  conducted wi th  

The Sendai paper presented  t h e  f a i l u r e  c a l c u l a t i o n s  f o r  fou r  d i f f e r e n t  
loading  h i s t o r i e s :  cons t an t  stress (creep) ,  cons t an t  s t r a i n  ( s t r e s s  relaxa- 
' t i o n ) ,  cons t an t  stress rate, and cons t an t  s t ra in  rate. 
t o  f a i l u r e ,  t f ,  under cons t an t  stress w a s  found t o  be determined by: 

For example, t h e  time 

TABLE 11. TIME TO FAILURE FOR CREEP LOADING 

Flaw Geometry S t r e s s  S t a t e  F a i l u r e  C r i t e r i o n ,  a/b+.f) - 

- -  C y l i n d r i c a l  Equi-biaxial  I acritical = 2 / f i  ~ ( ~ / a o ) / ( 2 D c r p ( t f ) - D y  
c a v i t y  I 

'critical = 4/3 J(T/ao) / (2Dcrp (tf )-Dg Hydros ta t ic  ' 

t e n s  ion  
Sphe r i ca l  

c a v i t y  

D ( t ) ,  c reep  compliance, psi-'; D = D ( 0 1 ,  g las sy  compliance. 

This paper extends t h e  results of t h e  Sendai paper t o  inc lude  t h e  case 

c=P g c r p  

of f a i l u r e  under repea ted  loading of a gene ra l  l i n e a r l y  v i s c o e l a s t i c  materiaL 
R e s u l t s  f o r  a t h r e e  element model were presented  previously;(5) Thus i t  is  , 

p o s s i b l e  t o  p r e d i c t  f a t i g u e  c rack  i n i t i a t i o n  and growth i n  l i n e a r l y  v isco-  . 

. elastic materials. 

THERMODYNAMIC CRITERION 

Neglect ing any energy d i s s i p a t i o n  i n  t h e  form of k i n e t i c  energy o r  per- 
c.; 

I 

manent ( p l a s t i c )  deformation, t h e  conserva t ion  of energy concept r e q u i r e s  
t h a t  r .  

i = + 2D+ S'E C . 
. \  

* 
t h a t  t h e  i n c r e a s e  i n  f r a c t u r e  su r face  area i s  un i fo rn ly  d i s t r i b u t e d  around- - 
the periphery of the flew, 
t h e s i s  does no t  appear  t o  markedly a f f e c t  numerical r e s u l t s .  

I n  t h e  d e r i v a t i o n  of t h e  cy l inde r  and sphere  express ioas ,  i t  i s  a s s w e d  

Although t h i s  Fa proSaLiy not: true, this hypo- 
". - - I___--I --- - I - -  

, 
. .  



* -  
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where 
ra te  of increase of t h e  f r e e  ( s t r a i n )  energy, 2D is  the  d i s s i p a t i o n  (nechan- 
i ca l  power converted i n t o  hea t  f l o w ) ,  and S'E i s  t h e  rate of i n c r e a s e  of sur-  
f a c e  energy ( t h e  do t  over  a symbol denotes  d i f f e r c n t i a t i o r  wirh r s s p e c t  t o  
time). S p e c i f i c a l l y ,  one has  

i s  t h e  power inpu t  of t he  appl ied  loading a: t h e  boundary, I? is  t h e  

V 

* 1 Ti Gi (2) 
A v 

where T are t h e  components of t h e  stress vec to r  on t h e  s u r l a c e ,  A ,  and 
i L. 

l ? + 2 D - -  I j c u i i i  d t  d(vo1) 
dt v o l  0 

(3) 

S'E = - I T d A  dt A 
( 4 )  

where T is t h e  energy requi red  to produce one u n f t  of new s u r f a c e  area. 

The stress d i s t r i b u t i o n  around a s p h e r i c a l  f l a w  of r a d i u s  a ( t ) ,  such 
t h a t  a(0) - a , i n  a n  e las t ic  media t i c h  is  subjec ted  t o  hydrostatic t e n s i o n  
uof (t) a t  radgus r - b, is  given by (69 

(a3 /r 3) a r ( r , t )  = u o f ( t >  0 

- u p )  u , ( r , t )  u o f ( t )  

, ( 5 )  
1-ak3 

.- .- - - - - - . - - - -- . 

' ( 6 )  
. .  1+(a/2) (a3 / r3)  

0 

-. 1 4 3  

where 

a ( t )  2 k S ao/b (7) 

Since  t h e  stress d i s t r i b u t i o n  i s  independent of t h a  material p r o p e r t i e s  (also 
c h a r a c t e r i s t i c  of t h e  stresses around a c y l i n d r i c a l  f k w ) ,  t he  s o l u t l o a  foz a 
v i s c o e l a s t ' c  media can be obtained by a p p l i c a t i o n  of t h e  Laplace t ransform 

. analogy. (7f  Thus i t  is poss ib l e  t o  show t h a t  t he  k f i n i t e s h a l  strains f o r  a 
l i n e a r l y  v i s c o e l a s t i c ,  i s o t r o p i c ,  incompressible ,  honogeneous naterial  are 

r 3 1 5  0 a(t-T) 

where S ( t )  is  a cavi ty-s ize ,  load h i s t o r y  dependent func t ion  defii led as I 

and the mater ia l -behavior  i s  descr ibed by t h e  c reep  c o a ? l i z x e  D ( t) .  Sub- 
s t i t u t i o n  of (5) t h r u  (8) i n t o  t h e  energy equat ion  (1) yfcld; thErp fol lowing 
c o n d i t i o n  f o r  c a v i t y  growth , 
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Note that this condition is satisfied if 
brackets is zero. 
up to the fracture initiation time, i.e. i(t) = 0 for t < tf. The latter is 
an integral expression for a(t) and describes the propagating flaw, i.e. 

= 0 or if the quaitity in the 
The former is the condition of a stationary flaw and holds 

t > tf. 

In a similar 
= uog(t) leads to 

manner, the assumption of a displacement loading u(b,t) 
the condition 

where Erel(t) is the relaxation modulus, Ere (0) E E , and the obvious.sta- 
tionary solution H(t) - 0 as well as the conhtion f6r a propagating flaw are 
again obtained. I 

FATIGUE FAILURE 

Consider now the case of a sinusoidally applied displacement, i.e. g(t) 

Integrating the first term and rearranging produ- 
= sin ut. 
quantity of (11) to zero. 
ces 

Since we desire the non-stationary solution we set the bracketed 

which if g(0) - 0 as in this case, can be expressed in the equivalent font 

Now it is desirable to introduce a specific representation for the re- 
laxation modulus. The expression used here is 

N 
Ere,(t) Ee + 1 Ei exp(-t/Ti) (14) 

i=l -. 

which has been shown to be capable of fittin 
data with a sufficient degree of accuracy. (8y The material description is 
thus general. Substituting (14) into (13) and integrating yields 

experimental stress relaxation 

I * +  [ exp cos ut - 1 4 r i  

l+w2,: 



, 

(15 contd.) 

which is the thermodynamic condition for determining the flaw size variation 
with time, a(t) 3 a. for t > t 

i 
f' 

ILLUSTRATIVE EXAMPLE 

Figure 1 shows a plot of equation (15) for Solithane 113 cyclically 
loaded at a rate of 5.4 cps. 
tion modulus was used, i.e. N - 7 in equation (14) where Ee = 558.0 psi and 

A seven element representation for the relaxa- 

T i Ei 9 Psi - ~~ 

10-1 108.17 
208.62 

' lo-? 5664.1 
IO-' 16491 

23743 
25303 
22357 

The ordinate of Figure 1 is proportional to the fifth power of the flaw radi- 
us and the abscissa is time. The figure, therefore, illustrates that portion 
of flaw behavior associated with flaw size variation. 
ture of flaw growth during fatigue, the stationary flaw solution 
also be considered. 

For the complete pic- 
= 0 must 

We interpret the results in the following manner: Until the flaw size 
predicted by equation (15) equals the initial flaw size, the stationary flaw 
solution governs and the flaw will not grow, i.e. a(t) = a for t < tf (see 
Figure 2). At t = tf the flaw begins to increase in size Pollowing a path 
predicted by the non-stationary solution of the general thermodynamic power 
equation (equation (15)). Note, however, that this solution undergoes a ser- 
ies of local maxima immediately after which the flaw is predicted to decrease 
in size and then increase until it reaches a new maximum larger than the 
first. This behavior must be examined in light of its physical significance. 
For a flaw to exhibit this behavior, it would be necessary for the crack to 
reheal or bond itself back together. 
faces tend to remain separated once a crack has developed. This means that 
once the flaw grows to one of the local maxima it will remain at that size 
(stationary solution governing) until the non-stationary solution reaches and 
exceeds that value. The flaw will then grow until it reaches a new maximum. 
In this manner, a fatigue crack will propagate in a series of growth and rest 
periods until the flaw can no longer accommodate the applied load by deforma- 
tion alone, and rapid fracture occurs. This stop-start behavior is illustra- 
ted in Figure 2.. 

This is highly unlikely for the new sur- 

EXPERIMENTAL RESULTS 

I 

The foregoing calculations should be viewed as a qualitative indication 
cf thP, metien cf a crack i" a cyclic strair? f i e l d ;  RCCZ?IC?C the grcwth Qf E 

crack in an infinite medium (the geometry considered in the abuve calcula- 



tions) changes the stress magnitudes, if not the stress distribution around 
the flaw, the growth rate depends on the current flaw size. 
this flaw size dependence as embodied essentially in the fifth power depend- 
ence of the flaw radius on time (cf Fig. 2), we are left with the jump or 
stop-start propagation of a flaw. 
with experimental results obtained in a geometry which eliminates the depend- 
ence on flaw size. 
( 8 ~ ~ )  is shown inset in Figures 3 and 4. 

If we neglect 

Let us now compare this growth behavior 

The specimen used in previous crack propagation studies 

The material employed was Sol thane 113, made up of equal parts by vol- 
ume of catalyst and prepolymer. (lo? The strain history applied to the speci- 
men was a sinusoidal strain of magnitude E superposed on a constant prestrain 
of magnitude E.  Note that in the calculations the prestrain is equal to zero. 

The results of the two tests are shown in Figures 3 and 4. The differ- 
ence in the two is the strain level. 
strain of 20% and Figure 4 for 25%. In both cases the prestrain was one-half 
the maximum. For the low strain = 20%, the rate of crack propagation is 
not as uniform and regular as the calculations indicate. 
be attributed to the influence of local variations in material properties 
where small variations become less important at higher strains and higher 
crack velocities. 
results of prescribing a strain of value 

Figure 3 presents data for a maximum 

This deviation may 

This is evident when one looks at Figure 4 which is the 
= 25%. 

The fracture progressed faster at the larger strain level and there were 
not as many cycles before failure was noted. Notwithstanding the differences 
between the theoretical model and the flaw configuration tested, the actual 
crack propagation in a start-stop or stepped fashion which resembles the kk- 

, havior predicted (see Figure 2). 

The data were obtained by photographing the advancing crack with a Hycam 

Note that in Figure 4 some points seem to be miss- 
The reason for this data gap is that it was hard to determine the loca- 

variable speed camera (5 to 10,000 frames per second) and each point plotted 
corresponds to one frame. 
ing. 
tion of the crack tip because the crack was almost closed at that time. 
Because this condition corresponds to zero strain, the data gaps locate con- 
veniently the beginning and end of one complete cycle. 

Note furthermore that although the timescale (zero on the time scale was 
unintentionally shifted on Figure 4 by about 0.12 sec) indicates the length 
of a cycle, the beginning of the complete cycle from zero strain through the 
maximum strain and back to zero strain begins at 0.12 sec. At that time the 
velocity of crack propagation is zero, increasing rapidly to its maximum near 

- 

the peak strain and then reaches zero again. I 

CONCLUSIONS 

Although thg theoretical prediction was based upon a three-dimensional 
stress field in which the fracture surface is assumed equally distributed 
over the flaw surface and a simple sinusoidal loading whereas the experimental 
study was conducted on a two-dimensional configuration using a superimposed 
prestrain and sinusoidal strain variation, a qualitative similarity between 
the actual and predicted r'iaw behavior has  bee^ 2eiiirtatrateZ. 
significant for two reasons. 

This is deezed 
First, the predicted growth-rest cycle of crack 



propagation has been demonstrated and secondly, the results tend to substan- 
tiate the hypothesis that there is a close association between the spherical 
flaw geometry with its uniformly distributed new surface generation and an 
actual sharp pointed crack. The latter will greatly simplify the study of 
macroscopic crack propagation in viscoelastic media. 

While the above is encouraging, a quantitative correlation is highly de- 
sirable. This should follow additional experimental verification, such as is 
in progress for the sheet specimen previously employed. Furthermore, it 
should be emphasized that the theoretical development presented here does not 
include the effects of (1) variations from equal triaxial loading, (2) finite 
strains, (3) compressibility, and (4) explicit consideration of a crack 
rather than smooth flaw fracture geometry. The present results, however, are 
believed to furnish a useful guide for investigating fracture initiation and 
growth in linearly viscoelastic media. 

. 
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